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The cross-linked and alkali stable alkaline anion exchange membranes (AAEMs) based on

1,2-dimethylimidazolium (proved to be much more stable than C2-unsubstituted imida-

zolium cation) were prepared by a hot-pressing method. The properties of these mem-

branes, e.g., water uptake, swelling degree, ion-exchange capacity, conductivity and

thermal and chemical stability, were characterized systematically. The swelling degree of

the membranes decreases with the decrease of the amount of 1,2-dimethylimidazolium

salt, up to 5.8%. The membranes are thermally stable below 200 �C. Alkaline direct

methanol fuel cell (ADMFC) fabricated by using CoOx/C as the cathode catalyst and PtRu/C

as the anode catalyst presents a promising performance with the peak power density of

12.7 mW cm�2 at a current density of 45 mA cm�2, indicating that the 1,2-

dimethylimidazolium-functionalized AAEMs are promising for the application in ADMFCs.

Copyright © 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights

reserved.
Introduction

Recently, alkaline anion exchange membrane fuel cells

(AAEMFCs) have been evoked great interests due to the much

faster kinetics of fuel electro-oxidation in alkaline environ-

ment than that in an acidic media [1e3]. Consequently, non-

noble metals or inexpensive metals/metal oxides can be

used as catalysts under alkaline conditions, greatly reducing
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the cost of the AAEMFCs. In addition, if using methanol as the

fuel, the methanol crossover problem would be highly

reduced because of the opposite direction of OH� anion

migration to that of the movement of the fuels in the

AAEMFCs [2,4,5]. Moreover, the utilization of alkaline anion

exchange membranes (AAEMs) replacing the aqueous KOH

electrolyte may fundamentally solve the problem in conven-

tional alkaline fuel cells, including the electrolyte leakage and

carbonation problem [2].
ished by Elsevier Ltd. All rights reserved.

mailto:gqsun@dicp.ac.cn
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhydene.2014.12.050&domain=pdf
www.sciencedirect.com/science/journal/03603199
www.elsevier.com/locate/he
http://dx.doi.org/10.1016/j.ijhydene.2014.12.050
http://dx.doi.org/10.1016/j.ijhydene.2014.12.050
http://dx.doi.org/10.1016/j.ijhydene.2014.12.050


i n t e rn a t i o n a l j o u r n a l o f h y d r o g e n en e r g y 4 0 ( 2 0 1 5 ) 2 3 6 3e2 3 7 02364
However, one of the major challenges associated with the

development of AAEMFCs is the availability of suitable alka-

line anion exchange membranes (AAEMs) that provide suit-

able hydroxide conductivity and chemical stability under

basic conditions. So far, quaternary ammonium groups are

the most commonly used anion exchange groups [1,6e9]. The

AAEMs with quaternary ammonium functionality, which

have been investigated for many years, exhibit a relatively

high ion conductivity (up to 10�1 S cm�1 at 50 �C [10,11]) due to

the efforts of the researchers on modifying the chemical

structure of the polymers used to prepare the membranes.

However, the quaternary ammonium-based membranes

might be unstable in alkaline environment, which makes the

membranes unsuitable to be used in the severe alkaline

environment. Aiming at enhancing the stability of the AAEMs,

many alternative cationic head-groups with high chemical

stability in the alkaline condition, such as guanidinium [12,13]

and phosphonium [14,15], have been widely discussed. How-

ever, the membranes based on these groups are of lower

conductivity and high cost, resulting in commercial unavail-

ability. Imidazolium cations, low cost and theoretically stable

due to the p-conjugated structure of the five-member het-

erocyclic ring, have been widely reported [16e20]. Extensive

studies have shown that the imidazolium-type AAEMs are

relatively stable at 60 �C [16,17,19,21e23]. However, whether

the imidazolium-based AAEMs would be suitable for the

application in the AAEMFCs and whether the modification on

the C2-position would enhance the alkali stability of the imi-

dazolium are worth to be investigated.

In this paper, we prepared imidazolium-basedmembranes

and investigated the possibility of these membranes used for

the ADMFCs. First, C2-unsubstituted imidazolium and 1,2-

dimethylimidazolium salts (with benzyl) were synthesized

and the chemical stability of these imidazolium salts were

compared. Then the 1,2-dimethylimidazolium salt, which is

more stable, was used to synthesize copolymers with high

molecular weight, as well as crosslinkable structure. Finally,

the copolymers were hot-pressed to prepare cross-linked

membranes. The hydroxide conductivity and dimension sta-

bility properties of the membrane were balanced by adjusting

the ratio of 1,2-dimethylimidazolium to styrene. The proper-

ties of themembranes, such as water uptake, swelling degree,

ionic exchange capability (IEC), hydroxide ion conductivity,

and chemical stability, were investigated systematically.

Finally, the feasibility of the AAEMs was studied in the

ADMFCs.
Experimental section

Materials

4-Vinylbenzyl chloride (VBC, 90%), divinyl benzene (DVB), 1-

methylimidazole and 1,2-dimethylimidazole were used as

purchased. Styrene was distilled under a reduced pressure.

2,20-Azobisisobutyrontrile (AIBN) was recrystallized from

boilingmethanol. Dimethyl sulfoxide (DMSO) was stirred over

CaH2 for 24 h, then distilled under reduced pressure and

stored over 4 Åmolecular sieves under a nitrogen atmosphere.

Deionized water was used in the experiments.
Synthesis of 1-methyl-3-(4-vinylbenzyl) imidazolium
chloride ([MVBIM][Cl]) and 1, 2-dimethyl-3-(4-vinylbenzyl)
imidazolium chloride ([DMVBIM][Cl])

The [MVBIM][Cl] and [DMVBIM][Cl] were synthesized by the

nucleophilic substitution reaction of 4-vinylbenzyl chloride

with 1-methylimidazole or 1,2-dimethylimidazole via a

modified way referred to literature [24]. The procedure is as

follows. Anhydrous ethanol, 4-vinylbenzyl chloride and 1-

methylimidazole or 1,2-dimethylimidazole were added

sequentially to a pre-dried Schlenk tube, then the mixed so-

lution was magnetically stirred under nitrogen atmosphere

for 0.5 h, then heated to 60 �C and maintained for 7 h. The

solution was added dropwised into ethyl acetate under

magnetically stirring at room temperature, then light yellow

precipitate was obtained. The precipitate was dried by

rotating evaporator at 50 �C and stored in glove box for further

used.

The chemical structure and the purity of these imidazo-

lium small molecular compounds were characterized by NMR

spectra (Fig. 1). Fig. 1A and B are the 1H and 13C NMR spectra of

[MVBIM][Cl] and [DMVBIM][Cl]. From the 1H NMR spectrum of

[MVBIM][Cl], it can be found that the proton signal (labelled 1

in the molecular structure) belonging to the C2 of imidazole

ring disappeared, resulting from the hydrogen/deuterium (H/

D) exchange of the proton on the C2 of the imidazolim

[MVBIM][Cl] with D2O, which was testified in literatures

[25e29]. From the NMR results, it can be concluded that the

C2-unsubstituted imidazolium and 1,2-dimethylimidazolium

salts were synthesized successfully and relatively pure.
Synthesis of cross-linked copolymers based on [DMVBIM][Cl]

[DMVBIM][Cl] was dissolved in DMSO under magnetically

stirring in nitrogen environment. A certain amount of AIBN

(1 mol% double bond), different portions of styrene (the ratio

of styrene to [DMVBIM][Cl] is from 1:4 to 5:1) and DVB were

added to the [DMVBIM][Cl] solution. After being freeze-thaw

degassed twice, the flask was placed in an oil bath thermo-

stated at 70 �C under stirring for 24 h to obtain the product,

which was then dried in a vacuum oven at 80 �C overnight.
Membrane preparation

The membranes were cast by a hot-pressing method as fol-

lows. The cross-linked copolymers were put between two

pieces of insulating films, fixed with two steel plates, then

heated to 100e150 �C and pressed at 11MPa for 1 h. Finally, the

three layer films were immersed in water to apart the mem-

branes from the insulating film.

By treating the membranes in 1 M KOH solution at room

temperature for two days, the chloride ions were exchanged

with hydroxide ions. Themembranes were taken out from the

alkaline liquor and thoroughly washed with deionized water.
Structure and morphological characterization

The structures of the [MVBIM][Cl] and [DMVBIM][Cl] before

and after being treated in 1 M KOH at different temperatures
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Fig. 1 e 1H and 13C NMR spectra of [MVBIM][Cl] and [DMVBIM][Cl] in D2O. A is the 1H NMR spectra of [MVBIM][Cl] and

[DMVBIM][Cl]: a) [MVBIM][Cl] and b) [DMVBIM][Cl]; B is 13C NMR spectra of [MVBIM][Cl] and [DMVBIM][Cl]: a) [MVBIM][Cl] and b)

[DMVBIM][Cl].
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were determined by NMR spectra carried out on Bruker ACIII

400 spectrometer in D2O.

Themorphologies of themembraneswere characterized by

scanning electron microscopy (SEM) with JEOL 6390LV. For

observation, themembrane samples were sputtered with gold.

Ion-exchange capacity

Ion-exchange capacity (IEC) of the membranes was deter-

mined by the back-titration method. The dried membranes in

OH� form were immersed into 40 mL HCl solution for two

days, then the potassium hydroxide solution was titrated into

the acid solution to determine the IEC.

The calculation of IEC was as follows:

IEC
�
mmol g�1

� ¼ N0HCl �NiHCl

m

whereN0HCl and NiHCl are themoles of HCl before and after the

membrane neutralization, and m is the mass of the dried

membrane in OH� form.

Water uptake (WU) and swelling degree (SD)

The WU of the membranes in OH� form was calculated from

the weight and dimension differences of membranes after

soaking in deionized water for 48 h at room temperature and

after drying in a vacuum oven. The membranes were soaked

in deionized water for 48 h at room temperature and

measured after being gently blotted the surface excess water.
To avoid absorbing water in the air, the membranes were

measured immediately after being dried for more than 8 h at

80 �C in vacuum.

The WU was calculated by the equation as follows:

WUð%Þ ¼ Wwet �Wdry

Wdry
� 100

where Wwet and Wdry are the weight of wet and dry mem-

branes in OH� forms in grams, respectively.

The SD was calculated by the equation as follows:

SDð%Þ ¼ Lwet � Ldry
Ldry

� 100

where Lwet and Ldry are the geometric length of the wet and dry

membranes, respectively.

Ionic conductivity

The conductivity was calculated as follows:

s ¼ L
WTR

where s is the conductivity of themembrane in S cm�1, L is the

length of the membrane between sensor II and reference

electrodes in cm, W and T are the width and thickness of the

membrane in cm, respectively. R is the resistance of the

membrane in ohms. The resistance of the membranes in OH�

form were measured in-the-plane (in-plane or parallel) with a

Solartron AC impedance spectrometer (1260 impedance
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analyser, 1287 electrochemical interface, Zplot software), with

the frequency ranging from 1 Hz to 1 MHz. Alternating voltage

was applied to the working and counter electrodeswith 10mV

amplitude. The resistance was determined from the semi-

circle regression of the Nyquist plot and the real resistance

was taken as the intercept on X-axis of this regression, while

the phase angle was zero degree.

Thermal and chemical stability

The thermal stability of the membranes was investigated by a

thermo gravimetric analysis (TGA) in a temperature range

from room temperature to 600 �C at a heating rate of

10 �C min�1 under nitrogen atmosphere.

The chemical stability of the membranes was monitored

by measuring the changes of the ionic conductivity of the

membrane before and after being kept in 1 M KOH solution at

60 �C for a certain time.

Single cell tests

The catalyst electrodeswere 40wt% PtRu/C (JohnsonMatthey)

with metal loading of 2 mg cm�2 as the anode and the

homemade CoOx/C with loading of 2.2 mg cm�2 as a cathode,

respectively. The anode, cathode electrodes and the mem-

branes were directly put together (without hot-pressing) to

fabricate the membrane electrode assembly (MEA). The active

area of the resulting electrode was 1 cm2.

The polarization curves of AAEMFCs were evaluated by a

fuel cell test system (FCTS, Arbin Co.). 2 M CH3OH containing

1M KOHwith the flow rate of 1mLmin�1 was fed to the anode

and simultaneously 80 sccm of O2 was fed to the cathode. The

test temperature was 60 �C.
Results and discussion

Stability of the imidazolium cations in alkaline media

The chemical stability of the imidazolium salts was tested in

1 M KOH using NMR spectra to characterize. Fig. 2 shows the
1H NMR spectra of the [MVBIM][Cl] and [DMVBIM][Cl] before
Fig. 2 e 1H NMR spectra of [MVBIM][Cl] and [DMVBIM][Cl] before

temperature. A) [MVBIM]þ; B) [DMVBIM]þ.
and after being treated in 1 M KOH solution at room temper-

ature and 80 �C. Fig. 2A is for [MVBIM][Cl] and Fig. 2B is for

[DMVBIM][Cl]. From Fig. 2A, it can be seen that no new peaks

were observed in the 1H NMR spectra of [MVBIM][Cl] after

exposure to 1MKOH solution at room temperature, indicating

that [MVBIM][Cl] was relatively stable in 1 M KOH solution at

room temperature. However, two new peaks appeared at

about 8.5 and 2.3 ppm in the 1H NMR spectra after being

treated at 80
�
C. Correspondingly, a new peak emerged at

about 173 ppm in the 13CNMR spectra (as shown in Supporting

information Fig. S1). From the results of NMR characteriza-

tion, it can be concluded that [MVBIM][Cl] is unstable in 1 M

KOH solution at 80 �C. However, no new peaks are found in the
1HNMR spectra of [DMVBIM][Cl] after being treated in 1MKOH

(Fig. 2B), indicating that [DMVBIM][Cl] is stable below 80 �C.
The NMR results show that [DMVBIM][Cl] is muchmore sta-

ble than [MVBIM][Cl], indicating that 1,2-dimethylimidazolium

has a significant advantage over C2-unsubstituted imidazo-

lium in alkaline environment. Therefore, the cross-linked

AAEMs based on 1,2-dimethylimidazolium were further

investigated.

Preparation and characterization of cross-linked 1,2-
dimethylimidazolium-based membranes

Preparation of cross-linked 1,2-dimethylimidazolium-based
membranes
As we know, [DMVBIM][Cl] is hydrophilic with high conduc-

tivity, while the styrene is hydrophobic and chemical stable.

To obtain copolymers with excellent properties, cross-linked

copolymers with different molar ratios of [DMVBIM][Cl] to

styrene, including 1:3, 1:4 and 1:4.5, were prepared and dis-

cussed extensively. Scheme 1 is the synthetic route for the 1,2-

dimethylimidazolium-functionalized cross-linked co-

polymers. The copolymers were cast into membranes by a

hot-pressing method. Accordingly, the membranes are

termed as M3, M4 and M4.5, respectively.

Characterization of cross-linked 1,2-dimethylimidazolium-
based membranes
Morphological characterization. Visually, the membranes are

flexible, transparent, and can be cut into any sizes or be bent
and after being treated in 1 M KOH solution at different

http://dx.doi.org/10.1016/j.ijhydene.2014.12.050
http://dx.doi.org/10.1016/j.ijhydene.2014.12.050


Scheme 1 e Synthetic route for the 1,2-dimethylimidazolium-functionalized cross-linked copolymers.
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at any degrees in wet condition. The morphology of the M3

membrane was characterized by SEM as shown in Fig. 3.

Fig. 3a and b are the through views of the membranes, while

Fig. 3c and d are the plane views of the membrane. It can be

seen that the surface of the membrane is relatively smooth

and compact without obvious defects or cracks on surface.

IEC, water uptake, and swelling degree. IEC value reflects to a

certain extent the properties of themembranes, such as water

uptake, swelling degree, and ionic conductivity. As shown in

Table 1, the IEC values decrease from 1.33 to 0.95 mmol g�1

with the increase in styrene proportions. Accordingly, the

water uptake decreases from 70.4% to 32.9% and the swelling

degree from 20.0% to 5.8%. It is deduced that the decreased

IEC, WU and swelling degree is due to the increase in hydro-

phobic groups with the increased proportion of styrene in the

membranes.

Especially, the cross-linked membrane-M4.5 shows a

swelling ratio of 5.8%, which was much smaller than that of

Nafion 117®membrane in Naþ form (21.7%) and [PMVBIm][OH]

membrane [23] with imidazolium as the functional group,

indicating that M4.5 is relatively stable in dimensionality.
Fig. 3 e SEM images of M3. (a) and (b) throug
Ionic conductivity. As shown in Table 2, the conductivities of

the membranes increase with the increase of the [DMVBIM]

[Cl] proportion in the membranes. The conductivities of M3,

M4, and M4.5 are 20.8, 11.8, and 10.8 mS cm�1 at 20 �C in

deionized water, respectively, which are suitable for hydrox-

ide exchange membrane materials used in fuel cells

announced with a prescribed minimum conductivity above

10�2 S cm�1 [12].

Thermal and chemical stability analysis. TGA curve of M3 is

presented in Fig. 4. The slight weight loss (<8%) of M3 below

200 �C is due to the evaporation of water and solvent (DMSO),

and the weight loss between 200 and 300 �C is ascribed to the

degradation of imidazole groups. A sharp decomposition at

about 412 �C is observed, which agrees with that reported in

literature [16,30]. Theweight loss is due to the decomposition of

the phenyl groups, which is the main chain of the membranes.

The TGA result indicates that the membranes in OH� form are

stable below 200 �C, which can meet the demand of AAEMFCs.

To investigate the chemical stability of the membranes in

alkaline, the membranes were immersed in 1 M KOH solution

at 60 �C for 200 h Table 3 shows the changes of the
h side view; (c) and (d) plane side view.

http://dx.doi.org/10.1016/j.ijhydene.2014.12.050
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Table 1e IEC,WU and swelling degree of themembranes.

IEC/mmol g�1 WU/% SD/%

M3 1.33 70.4 20.0

M4 1.17 45.3 13.8

M4.5 0.95 32.9 5.80

Nafion®117 Naþ e e 21.7

[PMVBIm][OH] [23] 1.58 86.4 20.8

Table 3 e Changes of the conductivities of the
membranes treated in 1 M KOH solution at 60 �C.

Conductivitya/mS cm�1

0 h 70 h 100 h 120 h 200 h

M3 20.8 27.7 22.1 16.4 10.1

M4 11.8 19.4 14.7 10.9 10.4

M4.5 10.8 18.5 16.5 10.7 9.0

a Measured at 20 �C in DI water.

Fig. 5 e Performances of the alkaline direct methanol fuel

cells with M3 and M4.5 membranes at 60 �C.
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conductivities of the membranes over different immersion

times. It is found that the conductivities of the membranes

increase at the beginning, then decrease. The conductivities of

the membranes increase at the beginning may be due to the

replacement of the residue Cl� in the membranes by OH�

slowly (the conductivity of Cl� is lower than that of OH�).
Though the conductivity of the M3 membrane decrease

almost to the half, the conductivities of the M4 and M4.5

membranes decrease slightly (<2 mS cm�1), showing that the

M4 and M4.5 membranes are relatively stable in 1 M KOH so-

lution at 60 �C for a certain time.

ADMFC single cell tests. The membrane samples of M3 and

M4.5 in OH� form are used for MEA fabrication. Fig. 5 shows

the polarization curves of the cells. A peak power density of

12.4 mW cm�2 is obtained at a current density of 45 mA cm�2

(fuel cell with M3), showing that these 1,2-

dimethylimidazolium-based membranes have the potential

application in the ADMFCs. The power density (11.3mWcm�2)

of the fuel cell with M4.5 membrane is lower than that with

M3. The reason may be due to the lower conductivity of M4.5.

Considering use of the non-precious metal, CoOx/C, as the

cathode electrocatalyst and absence of any ionomer in the

catalyst layer, the relatively lower value of the OCV is

acceptable. There is a large space left to improve the fuel cell
Table 2 e Ionic conductivities of the membranes.

Samples Conductivitya/mS cm�1

M3 20.8

M4 11.8

M4.5 10.8

a Measured at 20 �C in DI water.

Fig. 4 e TGA curves of the M3 membrane.
performance by optimizing the interfacial property between

the electrodes and the membrane [31]. Further researches on

optimization of the electrode structure and testing conditions

are going on in our lab.

From the results of IEC, WU, SD, ionic conductivity, ther-

mal and chemical stability of the membranes and the polari-

zation curves of the fuel cells, it can be seen that the

membranes based on 1,2-dimethylimidazolium could meet

the requirement of AAEMs in ADMFCs environment, espe-

cially the M4 and M4.5 membranes.
Conclusions

As a stable functional group, 1,2-dimethylimidazolium cation is

suitable as the functional groups for AAEMs. Consequently,

AAEMs based on 1,2-dimethylimidazolium were prepared and

characterized systematically. The resultantmembranesdisplay

excellent thermal stability and relatively good alkali stability.

The hydroxide conductivity of the membranes is up to

20.8 mS cm�1 at room temperature in deionized water, which

could meet the basic requirement for the AAEMFCs. Moreover,

the peak power density of the directmethanol fuel cell with the

novelAAEMis12.7mWcm�2 ata currentdensityof45mAcm�2,

using CoOx/C instead of Pt/C as the electrocatalyst. The results

show that the 1,2-methylimiazolium functional group has the

potential application for the AAEMs in AAEMFCs. Further work

on improving the conductivity of the 1,2-methylimiazolium-

basedmembranes andoptimizing the electrode structure of the

AAEMFCs would be carried out in detail.
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List of symbols

IEC ion-exchange capacity, mmol g�1

N0HCl moles of HCl before titration

NiHCl moles of HCl after titration

m the weight of dry membrane in OH� form

WU water uptake, wt%

Wwet the weights of hydrated membranes, g

Wdry the weights of dry membranes, g

SD swelling ratio, %

Lwet the lengths of hydrated membranes, cm

Ldry the lengths of dry membranes, cm

L the distance between the working electrode and

reference electrode, cm

W the width of the membranes, cm

T the thickness of the membranes, cm

R the resistances of the membranes, U

s ion conductivity, S cm�1
Appendix A. Supplementary data

Supplementary data related to this article can be found at

http://dx.doi.org/10.1016/j.ijhydene.2014.12.050.
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